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Abstract 

The United States maintains a network of sensor assets for a variety of purposes including 
detecting threats, collecting intelligence, and monitoring space.  Because of its nature, the 
network must be able to successfully complete all its varying missions with consistently high 
probability.  Thus there is a need to assign these sensors to tasks and functions so as to maximize 
the network’s capability to meet its objectives.  While it is possible to determine the best 
allocation based on a total enumeration of potential sensor assignments, this is intractable for 
large problems.  Once an allocation scheme is determined, some sensors may need reassignment 
in response to certain types of events, or sensors may simply fail.  We address these issues in 
developing a heuristic to find optimal/near optimal solutions to sensor networks.  Computational 
experiments demonstrate the ability of the heuristic to achieve high-quality sensor allocations 
within the time constraints inherent in the dynamic environment in which it operates. 
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Introduction: The United States military maintains an integrated air defense system that may be 

characterized as a sensor network, dedicated to the accomplishment of several tasks, including 

missile defense, missile warning, space surveillance and strategic and tactical intelligence 

collection.  Each task involves a series of functions that must be performed in order to 

successfully accomplish the task.  This network can be represented by a set of nodes and arcs, 

where the nodes represent the performance of a function by a particular sensor and the arcs 

represent the capability of one sensor to communicate information to another sensor. 

The ultimate objective of planners is to assign sensors across the four tasks above to achieve high 

probability of successfully accomplishing each of the tasks.  Because resources are limited, the 

allocation of sensors to tasks presents a challenge to planners.  Assigning a sensor to one task 

may prevent it from being assigned to another.  The network itself is well defined.  There is a 

clear definition of which sensors can perform which functions and which sensors can 

communicate with one another.  Each sensor has a unique set of functions that it can perform 

with differing probabilities of success, depending on the sensor’s own limitations and the current 

state in which it is working.  Using this information to develop the ‘best’ allocation scheme is the 

subject of this paper.  The challenge here is two-fold.  The first is to determine an appropriate 

initial allocation of sensors to tasks and the ability to reassign the sensors as time and 

circumstances dictate; the second, to accomplish this in near real-time. 

This problem is of interest to the United States Strategic Command (USSTRATCOM).  Their 

mission is to “provide the nation with global deterrence capabilities and synchronized 

Department of Defense (DoD) effects to combat adversary weapons of mass destruction 

worldwide.  Enable decisive global kinetic and non-kinetic combat effects through the 

application and advocacy of integrated intelligence, surveillance and reconnaissance; space and 

global strike operations; information operations; integrated missile defense and robust command 

and control” (Joint Publication 3-14, 2002).  Among these national objectives, missile defense, 

missile warning, space surveillance and intelligence collection are of greatest concern (Joint 

Publication 3-01, 2007).  In this paper, we first define the problem of allocating sensors to tasks, 

and then develop a method for rapidly obtaining near-optimal solutions. 

The remainder of the paper is organized as follows.  We first present a definition of the problem 

and of the network.  We then review previous related literature, including the broad areas of 
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network characteristics and analysis and resources allocation solution approaches.  Finally, we 

present our solution approach and the computational experiments necessary to test its efficacy, 

concluding with key findings and suggestions for future work. 

Problem Description:  There are four tasks that form the basis of the problem: missile defense, 

missile warning, space surveillance, and strategic and tactical intelligence collection.  Each task 

has unique characteristics and requirements, and also shares common characteristics and 

requirements with others.  In particular, for all tasks the flow of information between sensors 

follows the same general processes.  Thus, a general network representation can be applied 

across each task. 

Missile defense is a critical task whose failure yields an imminent threat to the United States.  

The objective of this task is to detect the occurrence of a (possibly) unpredicted missile event 

(e.g., a ballistic missile launch), track its path, classify its level of threat and, if necessary, engage 

and eliminate it.  Space surveillance and strategic and tactical intelligence collection are also 

important, but for different reasons.  Each is a form of information gathering.  Space surveillance 

monitors the movement of man-made objects in space, while scientific and technical collection is 

concerned with gathering information from various locations on earth.  In each case, the 

overarching goal is essentially the successful collection of information. 

A function is a specific type of activity that a sensor must complete successfully in order to 

contribute to the successful accomplishment of an assigned task.  The functions are governed by 

precedence constraints, with the preceding function needing to be completed before the 

subsequent function can commence.  The functions considered here, in order of their precedence 

order, are as follows: 

1. Monitor: Each sensor conducts surveillance over a specified region of earth or space, or is 
placed in standby mode for later use. 

2. Detect: An event occurs when one or more sensors are monitoring a region, and that event is 
noted by the sensor(s). 

3. Cue: A detected object’s path is projected through space and time based on its current 
position and other available data, such as trajectory. 

4. Track: An object of interest is monitored with the express intent of determining its trajectory. 

5. Classify: Based on an object’s trajectory and other available data, a determination is made as 
to whether or not the object is a threat. 
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6. Update: Position, trajectory and threat classification of the object are recorded continuously 
and adjusted, which may require repetition of previously activated functions. 

7. Engage: Depending on the classification of an object, resources are assigned to either avoid 
or eliminate the threat. 

8. Kill: An object classified as a threat is engaged and destroyed. 

9. Assess: When an event that requires military action occurs, such as the engagement of enemy 
troops or the launch of a missile defense projectile, the result of that action is evaluated. 

The tasks and functions form the basis for the representation of the problem as a sensor network.  

In order to illustrate the proposed representation, it is best to describe a scenario representative of 

the environment in which the model will be used.  This scenario depicts a notional network for 

missile defense (Figure 1) similar to one that might be encountered in the employment of the 

model.  It encompasses the characteristics of the actual environment and is valid for illustrative 

purposes only.  The functions previously defined are grouped vertically.  Some of the sensors 

represented in the model (e.g. phased-array radars) have sufficient capacity to perform their 

functions in support of multiple events and across multiple tasks.  However, assignable sensors 

may only be assigned to a single task at a time, although they may perform multiple functions 

within that task.  For example, the Monitor function can be performed by any combination of 

sensors 1 through 6.  These six shaded sensors are defined as assignable sensors, and are 

allocated to only one of the four tasks at a particular time.  These are the sensors of interest to 

this paper.  The un-shaded sensors are shared, and can perform their functions in support of all 

tasks simultaneously.  Thus they are not assigned to a particular task, but are available to all 

tasks. 

Each node in the network represents a sensor performing a specified function.  For example, the 

node labeled as “Sensor 7” performs function 2.  The arcs represent the transfer of information 

from sensors performing a particular function to those performing the subsequent function.  For 

example, the arc between Sensor 10 (performing function 5) and Sensor 12 (performing function 

6) indicates that Sensor 12 can receive the data needed to perform its function from Sensor 10.  

The other incoming arc indicates that Sensor 12 may also receive the necessary data from Sensor 

9.  The shading indicates which assignable sensors may be allocated to which tasks: Sensors 1 

and 2 may be assigned to either Task 1 or Task 2; Sensors 3 and 5 may be assigned to either 

Task 1 or Task 3; and Sensors 4 and 6 may be assigned to either Task 1 or Task 4. 
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Given this description, the problem can be stated as follows:  Allocate the assignable sensors to 

tasks in order to maximize the probability of successfully completing Task 1, subject to 

maintaining the probability of success for the remaining tasks above stated thresholds.  A 

decision support tool addressing this problem must be flexible enough to deal with continuous 

changes to the environment in which it is operating. 

  

Figure 1: Notional Network, Task 1 

Assumptions:  As with any modeling effort, a number of assumptions are necessary to define 

the problem and to help shape the approach used to obtain a solution.  Generally, assignable 

sensors may be capable of performing more than one function; but they may only be assigned to 

a single task at a time.  It is assumed that if a sensor performs any function while assigned to a 

particular task, it will remain assigned to that task until it performs all of the functions related to 

that task that it is capable of.  Referring to Figure 1, if Sensor 1 is assigned to Task 1, then it will 

perform functions 1, 3 and 4 in support of Task 1.  This reduces the need for excessive 

communication between sensors, minimizing potential loss of information and time lag.  It 

therefore stands to reason that a sensor that has successfully performed one function is better 

able to perform the subsequent function (providing it has the ability to do so) than another sensor 

that performed a different function previously.  So the reassignment of a sensor from one task to 

another before it performs all its functions related to the first task likely will not yield an 

assignment with higher overall probability of task success than an assignment that allows it to 
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complete all assigned functions.  For these reasons we examine only single assignment 

allocations.  Shared sensors are assumed to be able to perform their functions across multiple 

tasks, and they are implicitly allocated to all tasks at all times.  It is also assumed that no sensor 

is left unassigned, as cost is not a factor.   

In order to efficiently estimate the probability that a given sensor allocation will be able to 

perform the tasks required of the network, we must assume a limited form of independence 

between sensors.  Typically, in measuring network reliability, the assumption of independence 

indicates that the success of a sensor within the network does not rely on its prior history. In our 

case, however, the independence assumption refers to a specific relationship among sensors.  For 

the set of sensors assigned a particular function of a given task in parallel, the probability that a 

particular sensor successfully completes that function is independent of whether or not another 

sensor successfully completes that function.  However, the probability that a sensor successfully 

performs a particular function is dependent upon which sensor(s) successfully performed the 

preceding function and were able to communicate with the sensor in question.  This due to the 

variance in accuracy of communicated data from the various sensors.  As a result, while the basic 

tenets of reliability theory hold, significant modifications to the traditional network probability 

calculations must be made in order to accurately assess the performance of a network. 

Analysis of historical information and test data provide adequate information to infuse the model 

with the probabilities needed to calculate the overall sensor, function and task success 

probabilities.  Prior probabilities associated with the assignable sensors performing the first 

function are known, as well as conditional probabilities related to subsequent functions.  

Referring to Figure 1, the functions that must be performed to successfully complete the task are 

grouped vertically (i.e., sensors 1 and 2 both perform function 1).  The known prior probabilities 

are the probabilities of success for Sensor 1 and Sensor 2.  An example of a known conditional is 

Sensor 12 (performing function 6): the probability of success of Sensor 12 given Sensor 9 was 

successful (P(12|9)); and the probability of success given Sensor 10 was successful (P(12|10)).  

The probability of success for Sensor 12 given both Sensors 9 and 10 were successful is assumed 

to be the greater of the two individual probabilities: (i.e., P(12|9,10) = max {P(12|9), P(12|10)}).  

This assumption is not strictly true as the combination of information from two or more sources 

may increase the probability of success. 
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Finally, we assume that a network must have at least one feasible solution (allocation).  A 

network solution is feasible if the minimum threshold probability of success is met for each of 

the three secondary tasks.  Under this assumption the objective is to maximize the probability of 

success for Task 1, which is the most critical, subject to maintaining the success probabilities of 

the remaining tasks above a specified threshold. 

Background:  In developing an approach to the problem, there were several key areas that 

required investigation.  To ensure that the sensor network is accurately modeled, significant 

effort was devoted to understanding the characteristics of sensors such as those employed by the 

Department of Defense.  This included a review of sensor functions (Miranda, et al. 2007, 

Orman, et al. 1998), coverage (Howard, et al. 2002), prioritization and scheduling (Izquierdo-

Fuente and Casar-Corredera, 1994; Pinedo, 2002), and control (Gordon-Spears and Kiriakidis, 

2004). 

By its very nature, this type of problem involves multiple uncertainties.  For example, the 

detection of an event depends on the probability that a particular sensor can detect that type of 

event.  Successfully tracking an object depends not only upon the probability that the sensor can 

track the object, but also on the probability that the previous event (object launch) was detected 

in the first place.  No sensor is guaranteed to successfully accomplish every task it is assigned.  

The uncertainty can stem from failures due to conflicting signals or ineffective scheduling, such 

as an improper identification of an event (false positive) or a missed event (false negative).  As 

more and more tasks are assigned to a sensor - be they multiple functions (surveillance, tracking, 

etc.) or multiple events (e.g. tracking multiple targets) - the capacity to successfully complete all 

functions or manage all events begins to diminish.  This may necessitate a reallocation of 

resources to new functions or regions of surveillance, and typically affects overall performance 

of the network (Miranda, et al. 2007). 

Resource allocation is an optimization problem that seeks to assign a set of resources to a set of 

activities to achieve the most desirable result - precisely the objective of the sensor network.  In 

general, the problem can be formulated as: 

 

 



8 

Maximize:  ∑ ∑ ܿ௜௝ݔ௜௝
௠
௝ୀଵ

௡
௜ୀଵ  

Subject to: ∑ ௜௝ݔ
௡
௜ୀଵ ൒ 1, ݆ ׊ ൌ 1, … , ݉              (1) 

∑ ௜௝ݔ
௠
௝ୀଵ ൑ 1, ݅ ׊ ൌ 1, … , ݊   

௜௝ݔ א ሼ0,1ሽ  ׊ ݅ ൌ 1, … , ݊, ݆ ൌ 1, … , ݉, 

where xij = 1, if resource i is assigned to activity j, and zero otherwise.  In this case, resources i 

are assigned to activities j such that each activity is assigned at least one resource and each 

resource may be assigned to no more than one activity.  The assignment of a resource to an 

activity yields a gain cij for the overall system, and the total gain is to be maximized (e.g. 

Wolsey, 1998).  This gain may be any reasonable function by which the contribution of the 

assignment of a specific resource to the successful completion of a task may be measured.  Often 

it is associated with revenue (or cost), but can be defined in other terms as well (e.g. system 

reliability).  The common thread among most resource allocation methods is the focus on a 

single objective and the idea of a one-time solution.  The secondary objectives that are addressed 

here add a layer of complexity, as does the dynamic element of a changing network environment.  

In the present case, computation of the objective function is a complex reliability calculation.  A 

simple change of allocation may require significant computational effort.  Thus, the use of a 

commercial optimization package is really not a viable option. 

There is a need for real-time decision-making in the sensor allocation environment.  What is 

required is a procedure that can take an existing sensor allocation and improve it in the face of 

changed circumstances, in a manner in which the procedure can be stopped at any time to yield a 

usable, if not necessarily optimal, solution.  This is accomplished using local search, a family of 

heuristics in which an initial solution is progressively improved by local perturbations to the 

solution (referred to as moves).  A similar approach has been suggested by Zweben et al. (1993), 

who use a local search base metaheuristic, specifically simulated annealing to develop a 

procedure for space shuttle ground processing.  An extensive discussion of local search heuristics 

is given in Aarts and Lenstra (2003).  While a number of results have been obtained on the 

performance of such procedures, these results are generally of the form of asymptotic 

convergence to a global optimum in a probabilistic sense.  These are of limited applicability to 

the sensor allocation problem, since due to the time constraints in the application environment 

the likelihood of a solution procedure running long enough with a fixed set of data is very low.  
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Hence computational experiments (Barr, et al. 1995, Rardin and Uzsoy, 2001) are used to 

evaluate the performance of our proposed procedure. 

Probabilities:  Reliability theory gives us a methodology for evaluating how a group of sensors 

passes information from one end of a network to another (e.g. Kapur and Lamberson (1977).  

The reliability of a system that contains both serial and parallel characteristics can be said to 

represent the probability of successfully transmitting this information from end to end, is 

commonly known to be 

∏ ൫1 െ ∏ ൫1 െ ܲሺ ௜ܰሻ൯௜א௉೔
൯௡

௝ୀଵ ∏ ܲሺ ௜ܰሻ௜אௌ ,    (2) 

where P(Ni) represents the probability of success at node i, nodes in parallel are denoted by the 

sets Pi, and nodes in serial by the set S. 

The specific problem at hand is to determine which allocation of assignable sensors produces the 

best probability of success for one task while maintaining some minimum success probability for 

the other tasks.  As mentioned above, in calculating the success probabilities needed to evaluate 

the allocation, the probability of successfully completing one function depends not only upon a 

sensor’s probability of success, but also on the success probabilities of the sensor(s) performing 

preceding function(s). 

The probability calculations can be broken into three steps.  First, the success probability for 

each individual sensor performing a given function must be determined.  For each sensor in the 

first function this is known with some degree of accuracy through analysis of historical data.  For 

the remaining functions the probability determination follows a recursive structure, with the 

probability of a sensor successfully completing its function calculated using the conditional 

success probabilities of the sensors assigned to preceding functions and the law of total 

probability.  Second, the overall probability of successfully completing each function is 

calculated.  This involves determining the probability of a set of sensors successfully completing 

each function using the individual sensor success probabilities calculated in the first step.  

Finally, the overall task success probability is derived based on the function success 

probabilities. 

The following notation is introduced to formalize the probability calculations.  First, let f   
{1,…,9} be the set of functions that must be performed in order for a task to succeed.  ௜ܵ 
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represents a particular sensor i and ܥ௜
௙ the set of sensors that perform function (f – 1) and are 

connected to sensor ௜ܵ that performs function f.  Finally, ܣ௙ ك ௜ܥ
௙ is the subset of connected 

sensors that accomplished function (f – 1), and ܣҧ௙ ك ௜ܥ
௙ the subset of connected sensors that 

failed to perform function (f – 1), where ܣ௙ ׫ ҧ௙ܣ ൌ ௜ܥ
௙ and ܣ௙ ת ҧ௙ܣ ൌ  .׎

The probabilities of interest are defined as follows: 

 ௙ܲሺ ௜ܵሻ: the success probability for sensor i performing function f 
 ௙ܲሺ ௜ܵ|ܣ௙ሻ: the success probability for sensor i performing function f given the set of 

sensors ܣ௙ successfully performed function (f–1) 
 ௙ܲሺܣ௙ሻ: the probability that subset ܣ௙ successfully performed function (f–1) 
 ܲሺ݂ሻ: the overall success probability for function f 
 ܲሺܶሻ: the overall success probability for task T 

For each function beyond the first (whose success probabilities are known for each sensor), the 

probability of subset ܣ௙ occurring (that is, for a particular sensor ௜ܵ, the probability that a 

particular group of connected sensors from the previous function (f–1) was successful and the 

remainder were unsuccessful) is given by 

௙ܲሺܣ௙ሻ ൌ ∏ ௙ܲሺܽሻ௔א஺೑ ∏ ቀ1 െ ௙ܲሺܽሻቁ௔א஺ҧ೑      (3) 

Because the conditional probabilities ௙ܲሺ ௜ܵ|ܣ௙ሻ are known, sensor probabilities can be 

determined using the law of total probability as follows: 

௙ܲሺ ௜ܵሻ ൌ ∑ ௙ܲሺ ௜ܵ|ܣ௙ሻ ௙ܲሺܣ௙ሻ஺೑  C౟
౜      (4) 

When each sensor’s success probability has been calculated, the overall success probability for 

each function can be determined.  Because of independence, this probability is found using the 

formula 

ܲሺ݂ሻ ൌ 1 െ ∏ ቀ1 െ ௙ܲሺ ௜ܵሻቁ௜      (5) 

Finally, with a complete set of function success probabilities, the overall task success 

probabilities can be calculated following the rules of reliability in a serial system 

ܲሺܶሻ ൌ ∏ ܲሺ݂ሻ௙      (6) 
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The result of this series of equations is a characterization of the feasibility of a resource 

allocation scheme, and the probability of successfully accomplishing Task 1 under that scheme.  

Using this scheme as the basis for our determination of a “good” network allocation, the next 

step is to incorporate it into a methodology that searches for a good allocation.  Because the 

nature of this problem dictates that good solutions be obtained quickly, the use of established 

optimization techniques are impractical for this problem.  Instead, we developed a heuristic 

approach aimed at quickly finding good solutions, which provides the flexibility needed to 

operate in this sensitive, dynamic environment. 

Heuristic Approach:  The heuristic follows a four-stage process that first generates an initial 

assignment and then works to improve the assignment using a number of different moves.  In the 

application environment, an initial assignment would probably not be generated, but rather the 

current assignment in use would be used as the initial solution. In stage 1 (see Figure 2), an 

initial feasible solution is developed.  This is done by allocating assignable sensors to the 

secondary tasks (Tasks 2, 3 and 4) using a greedy approach, and random selection of which 

secondary task is next to be filled, until each task meets its threshold probability, and then 

allocating the remaining sensors to the primary task (Task 1).  This is done in two phases.  First, 

the order in which the secondary tasks are assigned sensors is randomized.  Then the first 

secondary task is assigned sensors randomly until a feasible allocation is achieved.  This process 

is repeated for the second and third secondary tasks.  If a secondary task ends up with an 

infeasible allocation (i.e., the allocation does not yield a success probability for that task above 

the pre-specified threshold), a new allocation is generated and the process repeated until a 

feasible solution is found. 

In Stages 2 and 3, exchanges are performed in which sensors swap positions in the allocation, 

relative to Task 1 (see figure 2).  By definition, an exchange has to improve the success 

probability of Task 1 without rendering any secondary task infeasible.  The first number used in 

the description of the exchange indicates the number of sensors assigned to Task 1 (the primary 

task) that are removed; the second indicates the number of sensors that are added to the Task 1 

allocation.  For example, the “1-2 Push” exchange indicates that one sensor assigned to Task 1 is 

removed from that task (and assigned to another) while two sensors not currently assigned to 

Task 1 are reallocated from their previously assigned tasks into Task 1.  Each time either Stage 2 

or Stage 3 is performed, the order in which the exchanges are applied is randomized.  This 
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process is repeated until no improvement in the Task 1 success probability is found.  If an 

improved allocation is found, the stage repeats with the first of the ordered exchanges.  If no 

improved allocation is found, the heuristic moves to the next stage.   

The search procedure outlined above can be viewed as a variable neighborhood search, where 

different neighborhoods are used in tandem to reduce the likelihood of becoming prematurely 

trapped in a local optimum.  Hansen and Mladenovic (1998) describe the concept of variable 

neighborhood local search algorithms, and describe an application to the p-median location 

problem.  The one-sensor exchanges from Stage 2 are useful for rapidly searching relatively 

small neighborhoods close to the starting solutions.  The size of these neighborhoods is O(n), 

where n is the number of assignable nodes.  Stage 3 is used to broaden the search neighborhood, 

moving further from the starting solution and local optimum.  The size of these neighborhoods 

are larger, O(n2).  Stage 4 continues the search for improvement (returns to stage 2) if there was 

an improvement in the previous pass.  Otherwise, another random starting point is generated and 

the procedure returns to Stage 1.  After a predetermined number of starts, the procedure 

terminates. 
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Figure 2. Heuristic Approach 
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Computational Experiments: Rardin and Uzsoy (2001) provide an excellent tutorial on the 

computational evaluation of heuristics.  Ideally, real-world data (or random variants thereof) 

should be used to test the performance of a heuristic.  However, due to the classified nature of 

this problem, information concerning sensor probabilities of success, the tasks to which a sensor 

type may be assigned, the communication connections between sensors, and the size of the 

network is not available.  Hence we use randomly generated test instances that we surmise may 

reflect the unknown operating environment to a reasonable degree, in the sense that a heuristic 

that performs well on our test instances should perform well in the actual application.  The task 

requires the identification of key problem parameters and varying those parameters within 

realistic ranges to create a robust sample of instances against which the heuristic may be tested.  

Discussions with USSTRATCOM personnel and review of the notional network illustrated in 

Figure 1 suggest that a real network might include from 12 to 20 assignable sensors that can 

perform Function 1, with secondary functions generally having fewer available sensors.  The 

ranges of the numbers of sensors assigned to each function in the test instances are given in 

Table 1, and are notional. 

Table 1. Number of Sensors Assigned to Each Function 

 Minimum Maximum 
Function 1 12 20 
Function 2 8 12 
Function 3 12 20 
Function 4 12 20 
Function 5 4 8 
Function 6 6 10 
Function 7 4 6 
Function 8 2 4 
Function 9 4 6 

  

For each test instance, the size of the network, defined by the number of sensors available to 

perform each function, is generated randomly.  The number of sensors available to perform 

function 1 (the assignable sensors) is fixed at 12, 15 or 20.  Using the notional network (Figure 

1) as a guide, the average density of the network is estimated to be 50%.  We define network 

density as the proportion of potential network connections that exist.  This means that the 

probability a given sensor in a particular stage can communicate with a sensor in the previous 

stage is 0.5, as is the probability of it passing information to a particular sensor in the subsequent 
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stage.  The network can be made denser or sparser by setting the communication probability at a 

desired level for generation of the network. 

The first function is to detect a potential threat.  A particular assignable sensor will have a 

different success probability of detection depending on the task to which it is assigned.  In 

addition, for sensors performing successor functions success probabilities depend on which 

sensor(s) (or sensor types) in the preceding function passed the task information to it.  The prior 

probabilities, for the first stage, are generated uniformly over the interval [0.5, 0.9].  For 

subsequent stages the range of conditional probabilities is over the interval [0.6, 0.8].  Again, 

these ranges were estimated based on educated best guesses and are notional. 

In evaluating the heuristic’s performance, several different methods are used.  For problems with 

few assignable sensors, the heuristic solution is compared to an optimal solution obtained by 

complete enumeration.  For larger problems, where explicit enumeration of solutions is not 

practical, a statistical estimation technique is implemented to derive a probabilistic upper bound 

to the optimal solution value, and the value of the heuristic solution is compared to the statistical 

upper bound. 

Enumeration of all possible allocation schemes with respect to Task 1 is fairly straightforward, 

although time consuming.  Sensor assignments require enumeration of 4n possible solutions, with 

each assignable sensor potentially allocated to exactly one of four tasks, where n is the number 

of assignable sensors.  This process includes feasibility calculations as well as task 1 

calculations, so the number of calculations necessary to fully evaluate the possible solutions can 

be quite large. 

Because explicit enumeration is impractical for larger instances, an alternative is to estimate 

statistically the optimal solution to the large instances.  Several approaches have been proposed 

in the literature to estimate the minimum value of a population and generate a confidence interval 

for that value. The three most common of these assume a continuous probability distribution for 

the objective function values of the solutions to the problem, differing in the basis for selection 

of the specific continuous probability distribution.  The simplest approach, the truncation-point 

approach, makes no assumptions about the functional form of the probability distribution except 

that it is continuous and has a lower truncation point at θ (e.g., Robson and Whitlock 1964; 

Dannenbring 1977).  The extreme-value-theory approach relies upon a classic statistical result by 
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Fisher and Tippett (1928) that provides a limiting distribution for the minima of n samples of 

size m, as m approaches infinity. The third approach, the limiting-distribution approach (e.g., 

Boender et al. 1982), selects a probability distribution that arguably should be an appropriate 

limiting model as the number of heuristic runs increases towards infinity. These methods 

estimate the distribution of the solution values by generating multiple solutions to a test instance 

(i.e., running a randomized heuristic multiple times) and using order statistics derived from these 

sampled solutions to estimate the parameters of the probability distribution of interest, depending 

on the particular estimation approach taken.  Comparisons of these techniques by Derigs (1985) 

and later by Ovacik, et al. (2000) and Wilson, et al. (2003) found that an approach presented by 

Golden and Alt (1979) performed well, and their approach is used here. 

The Golden and Alt (1979) approach uses the Fisher-Tippett result to postulate that the 

distribution of the minima of a number of independent samples from the solution will follow a 

Weibull distribution.  Although several methods have been used in the literature to estimate the 

Weibull parameters, a very simple approach has proven quite effective.  After generating a 

sufficient number of solutions, those solutions are partitioned into n groups each of size m.  The 

n group minima zi are found and ordered, such that 

ሾଵሿݖ ൑ ሾଶሿݖ ൑ ڮ ൑  ሾ௡ሿݖ

The location parameter a of the Weibull distribution is then estimated as 

ොܽ ൌ
௭ሾభሿ௭ሾ೙ሿି൫௭ሾమሿ൯

మ

௭ሾభሿା௭ሾ೙ሿିଶ௭ሾమሿ
       (7) 

and the Weibull scale parameter b as 

                                  ෠ܾ ൌ ሿۂ଴.଺ଷ௡ାଵہሾݖ െ ොܽ     (8) 

Finally, a lower confidence limit on the optimal solution is given by 

௟ݖ                                         ൌ ොܽ െ ෠ܾ       (9) 

Using this technique, a statistical lower bound on the optimal solution is obtained.  This 

technique is easily adapted to create upper confidence limits on maximization problems, which is 

the approach we followed. 
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In collecting the data required to conduct this statistical estimation process for a given test 

instance, we generated 250 random initial solutions, each of which was pursued to a local 

optimum using the 1-1 Exchange only (see Figure 2).  Once the 250 local optima were found, 

they were combined into groups of 10 and the maximum Task 1 success probability within each 

of the 25 groups became the zi.  These zi were in turn ordered such that 

ሾଵሿݖ ൒ ሾଶሿݖ ൒ ڮ ൒  ሾ௡ሿݖ

and the resulting ordered values were used to estimate the Weibull parameters and construct the 

confidence limits for the optimal solutions as described above.  The calculated confidence limits 

produce a 100(1-e-n)% confidence interval, so for n = 25, the upper confidence limit can be used 

as an upper bound for the optimal solution.  While previous researchers have found a few cases 

where the true optimum solution lies outside the confidence interval, this was not the case in any 

of the instances in this experiment where enumeration was possible as a check. 

Results:  In testing the performance of the heuristic, 50 unique instances each of size 12, 15 and 

20 (number of assignable sensors) were run against the criteria previously described.  The 

answers to two questions were sought.  First, does the heuristic converge to the known optimal 

solution for smaller problems (sizes 12 and 15)?  Second, does the heuristic converge to the 

statistical upper bound for larger problems (size 20)? 

Initially the 50 test instances of each size were run using 250 initial solutions (restarts).  For 

instances with 12 or 15 assignable sensors, the number of restarts required before the known 

optimal solution was obtained was measured.  In both cases, the number of required restarts was 

quite low.  For size 12 instances, over 80% of the instances found the optimal solution in five or 

fewer restarts.  For size 15 instances, 70% of the instances found the optimal solution in 5 or 

fewer restarts.  The maximum number of restarts needed to find the optimal solution was 33 for 

the size 12 instances and 39 for the size 15 instances. 

The time required to enumerate the size 20 instances was long; none of the instances was 

completed after two days of computation.  Hence the criterion for these problems was the best 

solution found by the heuristic.  Using this measure, over half of the instances converged in five 

or fewer restarts (see Figure 3).  As expected, the heuristic tends to converge to the best solution 

more slowly for larger instances than for smaller ones.  Closer analysis of larger (size 20) 

problem instances, where more restarts were needed to find the “best” solution, showed that the 
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average variation between the best solution found in 250 restarts and the best solution found in 

five restarts was less than 0.5%.  In other words, the heuristic consistently finds “very good” 

solutions to the larger problems quickly. 

 

Figure 3. Convergence to Optimal/Best Solution 

Using Golden and Alt’s method, statistical upper bounds for each of the 150 test instances were 

estimated, and the heuristic solutions compared to those upper bounds.  Figures 4 through 6 

compare the statistical bounds and the optimal (or best found) solution obtained for the ten 

problem instances in which the variation between the statistical upper bound and the best 

solution were the greatest.  Across the 50 instances of size 12, the maximum deviation between 

the known optimal solution and the statistical bound was 2.3%, but the average deviation across 

all 50 instances was only 0.24%, including 37 instances where the statistical upper bound and the 

optimal solution were equal.  For the 50 size 15 instances, the maximum deviation between the 

known optimum and the bound was 1.7%.  For the 50 size 20 problems the maximum deviation 

of the heuristic solutions from the bound was less than 0.9%, significantly better than the worst 

case in the smaller problems.  These results indicate that the bounding technique is valid for 

generating an estimate of an instance’s upper bound, and the improvement in the “worst case” 

result further indicates that the technique performs well, if not better, as problem sizes increase.  

Furthermore, even if the best solution found by the heuristic is not the true optimal solution, the 

difference is so small (typically in the third or fourth significant digit) that the effort necessary to 

obtain the true optimal is disproportionate to the value gained. 
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The primary conclusion from these observations is that the heuristic tends to do better as the 

instance size increases. Larger problems have larger solution spaces as defined by the number of 

possible feasible solutions, with the larger possibility of near optimal solutions.  Randomizing 

the initial solutions for each run further diversifies the paths that may be taken to obtaining local 

maxima within each run.  If many runs converge to the same local maximum given the widely 

varied starting points, that local maximum is quite likely to be the global maximum. 

 

Figure 4: Confidence Limits for the 10 Worst out of 50 Instances, Size 12 
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Figure 5: Confidence Limits for the 10 worst out of 50 Instances, Size 15 

 

Figure 6: Confidence Limits for the 10 Worst out of 50 Instances, Size 20 
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those tasks each meet their thresholds.  As a result, it is likely that the number of sensors 

assigned to each task is at or near the minimum required to achieve that feasible probability.  

This raises the question of how much improvement the search heuristic yields over a simple 

random solution. A comparison of random starting solutions was made against the solutions 

obtained running the heuristic with a common computation time limit imposed on both 

procedure.  Fifty test instances of each size were compared under two scenarios.  In the first, the 

heuristic was run to completion for each test instance (250 restarts each) and the total 

computation time was recorded, then random solutions were generated for the same period of 

time.  Second, the heuristic was run until the optimal (or best known) solution was found for the 

first time, and then random solutions were generated across that time interval. 

For the size 12 problems, the random solutions included the optimal in 43 of 50 instances.  The 

random solutions generated in the shorter period (second scenario) included the optimal in 17 of 

50 instances.  For size 15 problems, the random solutions included the optimal in 10 of 50 

instances.  The random solutions for the second scenario included the optimal in 2 of 50 

instances.  For the size 20 problems, the random solutions failed to include the best known 

solution for any instance under either scenario.  Hence for the larger instances for which the 

heuristic is intended there is certainly value in employing the heuristic as opposed to simply 

generating random solutions in the hopes of quickly discovering the best possible solution. 

Computation Times for the Heuristic versus enumeration:  For ease of development, all 

computer programming was performed in Visual Basic (VB).  The size 12 problems took from 1 

to 2 minutes to enumerate, while the heuristic solved the problems in less than 2 seconds 

(smallest ratio greater than 30/1).  The size 15 problems took from 10 to 90 minutes to 

enumerate, while the heuristic solved the problems in less than 10 seconds (smallest ratio greater 

than 60/1).  The size 20 problems took over 24 hours to enumerate (none were completely 

enumerated), while the heuristic solved the problems in less than 2 minutes (smallest ratio 

greater than 720/1).  Since VB is an interpreter, one would expect that the computation times 

experienced here are roughly an order of magnitude greater than they would be if the procedure 

were coded in a compiler language such as C++ or Fortran. 

Network Changes:  The ability to generate a near-optimal allocation in a static environment is 

valuable, but the capability to react to changes in the network environment is even more 

important in the application domain for which this heuristic is intended.  Not only can the 
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proposed heuristic quickly find a good solution to a particular sensor network, it is flexible 

enough to quickly find a good solution to a “new” network when the environment changes 

suddenly. 

One environmental change of interest is the addition of a sensor to the “current” network.  This 

may be either an assignable sensor or a shared sensor, where a sensor may be re-activated after 

undergoing maintenance, or an orbiting sensor enters a particular region of interest.  In either 

case, there is no negative impact on the network’s performance, since the success probability for 

any task will not decrease by adding a sensor.  Thus, action is not necessary immediately in 

terms of reallocating sensors across tasks.  If the new sensor is assignable, it can immediately be 

allocated to Task 1.  This allocation can then be used as a starting point for the heuristic to find 

an even better allocation with respect to the Task 1 success probability. 

Another change is the removal of a sensor (e.g., destroyed by attack, orbiting sensor moves out 

of range).  There are three scenarios to be considered: the removal of a sensor assigned Task 1; 

the removal of a sensor assigned a secondary task; or the removal of a shared sensor.  If a Task 1 

sensor is removed, the allocation remains feasible, but the success probability for Task 1 will 

decrease.  The removal of a secondary task sensor is likely to result in infeasibility, necessitating 

a reassignment of sensors to restore feasibility.  Finally, removal of shared sensors may yield 

both a decrease in the Task 1 success probability and infeasibility. 

When the removal of a sensor, whether assignable or shared, results in an infeasible allocation 

with respect to the secondary tasks, action must be taken to reallocate the remaining sensors so 

as to find an optimal/near optimal, feasible solution to the new network.  Of course, reassessment 

of the feasibility requirements may be appropriate too, if the new network is such that the 

previous constraints are too restrictive to allow reasonable probabilities of successful completion 

of Task 1.  However, that is beyond the scope of this paper. 

Future Work:  A natural extension of the current effort is to investigate issues of objective 

function modification.  While this paper focused on the development of an approach geared to 

maximizing the probability of successfully accomplishing one primary task, objective function 

modification may more accurately capture the nature of the problem.  The goal of the sensor 

network may be to maximize the probabilities of success for all four tasks (i.e., maximize the 

minimum of the four task probabilities).  This necessarily assumes that all tasks are of equal 
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importance, and that each has the same minimum threshold requirement.  Ultimately, the 

decision-maker must determine the appropriate characterization of the objective function, and 

what is appropriate will change as tactical and strategic situations change. 

Conclusions:  A heuristic approach that was developed to allocate sensors across competing 

tasks has been shown to achieve optimal/near optimal solutions, subject to the constraints of the 

network.  Solutions are obtained in a fraction of the time that would be required to guarantee 

optimality using an integer programming model. 

The application of the heuristic to networks representative of the real-world problem has been 

shown to be effective in determining the best assignment of sensors to tasks.  Also, as events 

occur that impact the performance of the network, it is necessary to have a tool in place that can 

re-evaluate that network and recommend changes to the sensor assignments.  The heuristic 

proposed here accomplishes that, providing a decision support tool that can reassign sensors to 

tasks quickly and effectively. 

References: 

Aarts, E., J.K. Lenstra (Eds.) (2003). Local search in combinatorial optimization, Princeton, NJ, 
Princeton University Press.  

Barr, R.S., B.L. Golden, J.P. Kelly, M.G.C. Resende and W.R. Stewart Jr. (1995). “Designing 
and reporting on computational experiments with heuristic methods,” Journal of Heuristics, 1, 9-
32. 

Boender, C.G.E., A.H.G. Rinnooy Kan, L. Stougie and G.T. Timmer (1982). “A stochastic 
method for global optimization,” Mathematical Programming, 22, 125-140. 

Dannenbring, D.G., (1977). “An evaluation of flow shop sequencing heuristics,” Management 
Science, 23(11), 1174-1182. 

Derigs, U. (1985). “Using confidence limits for the global optimum in combinatorial 
optimization,” Operations Research, 33(5), 1024-1049. 

 Dulin, Johnathon L. (2008),  Global Sensor Management: Real-Time Reallocation of Military 
Assets among Competing Tasks and Functions. Ph.D. Dissertation, Operations Research 
Program, N.C. State University, Raleigh, NC. 

Fisher, R.A. and L.H.C. Tippett (1928). “Limiting forms of the frequency distribution of the 
largest or smallest member of a sample,” Proceeding of the Cambridge Philosophical Society, 
24, 180-190. 

Golden, B.L. and F.B. Alt (1979). “Interval estimation of a global optimum for large 
combinatorial problems,” Naval Research Logistics Quarterly, 26(1), 69-77. 

Gordon-Spears, D. and K. Kiriakidis (2004). “Reconfigurable robot teams: modeling and 
supervisory control,” IEEE Transactions on Control Systems Technology, 12(5), 763-769. 



24 

Hansen, P., N. Mladenovic (1998). “An introduction to variable neighborhood search,” Voss, S. 
et al. (Ed.), Meta-heuristics Advances and Trends in Local Search Paradigms for Optimization, 
Kluwer, Dordrecht, 433-458.  

Howard, A., M.J. Mataric and G.S. Sukhatme (2002). “An incremental deployment algorithm for 
mobile robot teams,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots 
and Systems, Lausanne, Switzerland, 2849-2854. 

Izquierdo-Fuente, A. and J.R. Casar-Corredera. “Optimal Radar Pulse Scheduling Using a 
Neural Network,” Proceedings of the 1994 IEEE Conference on Neural Networks, 4588-4591. 

Joint Publication 3-01 (2007). Countering Air and Missile Threats, Headquarters, Department of 
Defense, Washington, DC. 

Joint Publication 3-14 (2002). Joint Doctrine for Space Operations, Headquarters, Department of 
Defense, Washington, DC. 

Kapur, C.K. and L.R. Lamberson, Reliability in Engineering Design (1977). John Wiley and 
Sons, New York, NY. 

Miranda, S.L.C., C.J. Baker, K. Woodbridge and H.D. Griffiths (2007). “Comparison of 
scheduling algorithms for multifunction radar,” IET Radar, Sonar and Navigation, 1(6), 414-
424. 

Orman, A.J., A.K. Shahani and A.R. Moore (1998). “Modelling for the control of a complex 
radar system,” Computers and Operations Research, 25(3), 239-249. 

Ovacik, I.M., S. Rajagopalan and R. Uzsoy (2000). “Integrating interval estimates of global 
optima and local search methods for combinatorial optimization problems,” Journal of 
Heuristics, 6, 481-500. 

Pinedo, M. (2002). Scheduling: theory, algorithms and systems. Upper Saddel River, NJ: 
Prentice Hall. 

Rardin, R.L. and R. Uzsoy (2001). “Experimental evaluation of heuristic optimization 
algorithms: a tutorial,” Journal of Heuristics, 7(3), 261-304. 

Robson, D.S. and J.H. Whitlock (1964). “Estimation of a truncation point,” Biometrika, 51, 33-
39. 

Wilson, A.D., R.E. King and J.R. Wilson (2003). “Case study on statistically estimating 
minimum makespan for flow line scheduling problems,” European Journal of Operational 
Research, 155, 439-454. 

Wolsey, L.A. (1998). Integer Programming, New York, NY: John Wiley & Sons, Inc. 

Zweben, M., E. Davis, E. Daun and M.J. Deale (1993). “Scheduling and rescheduling with 
iterative repair,” IEEE Transaction on System, Man, and Cybernetics, 23(6), 1588-1596. 




